BMA: Visual Tool for Modeling and Analyzing
Biological Networks

David Benque!, Sam Bourton!, Caitlin Cockerton®, Byron Cook!, Jasmin
Fisher!, Samin Ishtiaq', Nir Piterman?, Alex Taylor!, and Moshe Y. Vardi?

1 Microsoft Research Cambridge, 2 University of Leicester, 3 Rice University

Abstract. BioModel Analyzer (BMA) is a tool for modeling and ana-
lyzing biological networks. Designed with a lightweight graphical user
interface, the tool facilitates usage for biologists with no previous knowl-
edge in programming or formal methods. The current implementation
analyzes systems to establish stabilization. The results of the analysis—
whether they be proofs or counterexamples—are represented visually.
This paper describes the approach to modeling used in BMA and also
notes soon-to-be-released extensions to the tool.

Tool location: http://biomodelanalyzer.research.microsoft.com/ !

1 Introduction

In recent years, the verification community has seen a huge increase in the use of
its tools for modeling and analyzing biological systems (e.g. [7-9,13], etc). It is
notable, however, that in almost all cases the biologists who want to access these
tools need a proficiency in computer programming or have to rely on help from
computer scientists. The difficulty here is that current tools require sophisticated
knowledge of both modelling and analysis techniques, as well as experience with
how to combine them. This presents a major barrier to the adoption of formal
methods in biology and limits the extent to which its tools can be exploited.

This paper describes BioModel Analyzer (BMA — read “bee-ma”), a graphical
tool for the construction and analysis of biological models. The goal of this
tool is to support the construction of models using visual notations familiar to
specialists in biology, not computer science. More generally, it is intended to
illustrate how those with an expertise in biology and an interest in biological
modeling, namely biologists, can be given direct access to formal modeling and
analysis techniques.

The challenge in this domain is the mismatch between the demands imposed
by formal verification tools and the ways biologists think about and compose
models. Formal verification tools require models to be specified using logical
formalisms whereas biologists tend to see their models in spatial and tempo-
ral terms, making distinctions between cells, proteins, genes, etc. and tracing
the pathways between them. For example, in order to perform formal verifica-
tion/analysis graphical models can require precise formal semantics, and yet bi-
ologists are, for the most part, unfamiliar with these logical forms. Furthermore,

! Usage requires Microsoft Silverlight to be installed on your system

the results of formal analysis (e.g. abstract counterexamples, invariants, proofs,
etc) are often presented in ways that are unintuitive to biologists. With these
issues in mind, BMA has been purposefully designed to fit into biologists’ existing
ways of understanding and working with biological models, whilst exploiting the
benefits of formal verification techniques. Furthermore, the tool aims to present
the results of analysis so that it is intelligible to biologists and facilitates their
further scientific investigations.
Related work. There is a large body of work on usage of formal methods
in biological modeling. For example, BioSpice [12] is a repository for many such
tools and projects. Here, our focus is to support a very specific level of abstraction
and, currently, very limited analysis. This allows us to focus on the user interface
and connection between formal verification analysis tools and non-CS experts.

Several attempts have been made to make analysis and modeling tools eas-
ier to use for experimental biologists. For example, an English to formal model
translator has been proposed [6], as well as a notation describing cells through
tables of possible transitions [1]. Graphical notations have also been used for such
purposes (e.g. [5], [4]). Our approach is similar to that in [5], where a graphical
interface is used to create models. However, while their approach requires the
biologist to supply state machines that produce the required behavior and pro-
gramming in either Java or C++ to, e.g., coordinate execution and start it, our
aim is to protect the non-CS expert from the need in such knowledge. In our
approach the user supplies the rules that govern behavior and induce the state
machines. The distinguishing characteristics of BMA are a) its high-performance
analysis engine [3] and b) its focus on improving the interface between the biol-
ogist and the formal verification/analysis tool.

Motivated by SBML [10], BMA supports output to a custom XML format. Thus,
it is possible to interface other analysis tools with BMA models.

2 Designing biological networks

BMA focuses on a very limited domain of modeling. Our models are composed
of one or more cells, cell elements (i.e., proteins), and connections that specify
the relations between these elements. These elements represent the biological
components very abstractly and in high level. As mentioned, BMA is intended to
support the design of models using graphical notations. This notation has been
intentionally designed to be familiar to biologists and match the representations
they commonly use in modeling (e.g., [11,16,18]). These graphical models pro-
duce an underlying semantic layer based on Qualitative Networks (QN) [15].
Thus, a drawing gives rise to a model which can be automatically analyzed. All
advanced features of QNs are available to advanced users.

Fig. 1 shows an example of a simple model. On the canvas there is an isolated
protein and two cell membranes, containing proteins. Each cell has two receptors
(in green) and the arrows show a cascade that flows from the cell on the left to
the cell on the right. The arrows and bar-arrows are the usual notation to indi-
cate activation (positive influence) and inhibition (negative influence) between
proteins. In QNs, these relationships are translated into rules that govern the
behavior of proteins based on the values of proteins affecting them.

of

Protd Prowd

Fig. 1. A small model including two cells, receptors (green shape on the membranes),
cell signalling (red coils), and a protein in the outer cell surrounding (grey coil).

The user constructs the models by dragging and dropping elements onto
a gridded canvas. Cell membranes that are added fill an entire square in the
grid. These have no functional use in the analysis and simply allow the user to
pictorially represent a cell. Proteins can be placed either in or outside of these
membranes. They can be represented as either receptors, that lie on the cell
membrane, or as stand-alone proteins in or outside cells. Connections in the
form of arrows or bar-arrows can be drawn between the proteins.

Each protein can be named and given a finite value range to represent the
protein’s concentration level. For example, a range of [0..3] for a protein might
signify concentration levels “off”, “low”, “medium”, or “high”. In Fig. 2 we see
the additional window in which the name and value ranges are set.

Semantically, a graphical BMA model takes the form of a transition system,
which can be analyzed using existing formal analysis tools. BMA’s underlying
analysis is designed to prove stabilization [19]. A model is stabilizing if in every
execution all variables (i.e., protein value ranges) eventually reach a single fixed
value and there is no possibility of further change. In addition, all executions
result in the same fixed value for each protein. The user can execute this analysis
and check whether the resulting model is stabilizing by pressing the “proof”
button in the tool. Support of more temporal properties is currently developed.

The output of the test for stabilization is displayed graphically. Proteins that
result in a fixed value are colored green and annotated by their value. Proteins
that do not reach a fixed value are colored red and annotated by their range of
possible values. With models that fail to stabilize, the user can access details
of the analysis and the individual steps executed by right-clicking on the proof
button and selecting the appropriate contextual menu option. Example results
from stability analysis are given in Fig. 3. The left image shows a cell from a
non-stabilizing model and the right a cell from a stabilizing model.

As sometimes happens with model checking, when properties are proven for
a system, the reasons are not always clear. In biology and with BMA, especially,

E

g g ¢
.. % | ;

Name Range _
GT1 | 05| 4% [__

s
g C%}

Fig. 2. Partial view of more complex model and window in which protein name and
value ranges are entered.

Fig. 3. Cell from non-stabilizing model (left) and cell from stabilizing model (right).

this is problematic because why and how stabilization occurs has important
implications for what a biologist might do next in their research. To help users
understand why stabilization holds, we are currently working on an animated
visual representation of the proof’s execution.

3 Analyzing biological networks

As we have noted, the graphical models users produce are formally represented
using Qualitative Networks (QN) [15]. The tool automatically translates the
graphical models to a QNs. The QNs include variables representing the con-
centration of proteins as a discrete value in a fixed range. Values of variables
change gradually according to interactions between the proteins. QNs and sim-
ilar formalisms (e.g., genetic regulatory networks [17]) are simple enough to be
represented graphically and expressive enough to capture interesting biological
phenomena (e.g., [2,14,15,17]).

Qualitative networks. A qualitative network (QN) is Q = (V,T,N), where
V = (v1,v9,...,v,) is a set of variables ranging over {0,1,...N} and T =

(Ty,...,T,) are their respective target functions. A state of the system is an
assignment s : V — {0,1,... N}. Let X' denote the set of all possible states. A
target function T; € T is T; : X — {0,1,... N'}. Intuitively, in a given state s, vari-
able v; “would like” to get the value T;(s). However, values of variables change
by at most 1. The successor of state s is s’, where for every v; € V we have:

s(v;) +1 s(vy) < Ti(s),
s'(vi) =1 s(v) s(vi) = Ti(s), (1)
s(v;) -1 s(v;) > Ti(s).

Thus, a QN defines a transition system over X. All variables change their value
synchronously by following their target functions. We abuse notation and write
also T': X — X as the function that associates with a state s its successor s'.

Each protein in the design corresponds to a variable in the underlying Quali-
tative Network. Perhaps the most complex feature of QNs is the target functions.
In order to enable novice users to bypass the need to define target functions, we
set a default target function induced by the activations and inhibitions applied to
a given protein. Denoted in short as ave(pos) — ave(neg). That is, the weighted
average of the proteins that activate the protein minus the weighted average of
the proteins that inhibit the protein.
Custom target functions. In the graphical representation, users can cus-
tomize the target function by clicking on the cog-wheel in a protein’s property
window (see Fig. 2). Target functions are defined using a small language of pos-
sible mathematical operations (e.g. +, —, / maz, etc). For example we might use
T; = N - 2322 which models a situation where v; and vy affect v; negatively.
With no negative influence (i.e, when the values of v; and vy are 0), v; aims
to settle in its maximal value. When vy and wve are high, v; aims to decrease.
This models a situation in which a protein is constitutively produced unless
proteins vy and wve inhibit its production. A more complex target function is
T; = max(0,min(2-v1,1)) x vy. In this case if v1 is 0 or 1 then v; aims to follow
v9. However, if v; is more than 1, then v; aims to decrease to 0. This models
a situation when above a certain threshold protein v; strongly inhibits v; but
otherwise protein vy positively influences v;.
Stabilization. We say that a state s is recurring if it is possible to reach s
from itself after a finite number of applications of T'. That is, for some i > 1 we
have s = T%(s). We note that the number of states of a QN is finite, hence, the
set of recurring states cannot be empty. A QN is stabilizing if for some state s
we have s = T'(s) and no other state is recurring.

BMA attempts to prove stabilization using an approach from [3] which com-
bines a search for thread-modular proofs of liveness together with techniques
from abstract interpretation and the intervals domain.

4 Conclusion

In this paper we introduce a new graphical tool for modeling and analyzing
biological networks. The tool is intended for use by biologists. The current im-
plementation analyzes systems to establish stabilization, with support for ad-
ditional temporal properties in development. The results of BMA’s analysis are

represented visually: counterexamples are displayed by showing regions of the
network that could take on additional values. In the future proofs will be demon-
strated by visually displaying the lemmas found during the proof search. We are
currently working on introducing additional types of analysis. On the one hand,
introducing analysis that does not require the user to specify logical formulas. On
the other hand, finding intuitive (and graphical) ways to allow users to specify
logical formulas and feeding back the output of analysis.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

AMIR-KRoOLL, H., SApDOT, A., COHEN, I., AND HAREL, D. GemCell: A generic
platform for modeling multi-cellular biological systems. T'CS 391, 3 (2008).
BEYER, A., THOMASON, P., Li, X., ScorT, J., AND FISHER, J. Mechanistic
insights into metabolic disturbance during type-2 diabetes and obesity using qual-
itative networks. TCSB 12 (2010).

CooK, B., FISHER, J., KREPSKA, E., AND PITERMAN, N. Proving stabilization
of biological systems. In VMCAI (2011).

DaNos, D., FERET, J., FONTANA, W., HARMER, R., AND KRIVINE, J. Rule-based
modelling and model perturbation. TCSB 11 (2009).

EFrONI, S., HAREL, D., AND COHEN, I. R. Toward rigorous comprehension of
biological complexity: modeling, execution, and visualization of thymic T-cell mat-
uration. Genome Res 18, 11 (2003).

ErRrRAMPALLI, D. D., Priami, C., AND QUAGLIA, P. A formal language for com-
putational systems biology. Omics 8, 4 (2004).

FisHER, J., PITERMAN, N., HAINAL, A., AND HENZINGER, T. Predictive modeling
of signaling crosstalk during c. elegans vulval development. PLoS Comp Bio 3, 5
2007).

(GHOS)H, R., TiwARI, A., AND TOMLIN, C. Automated symbolic reachability anal-
ysis; with application to delta-notch signaling automata. In HSCC (Prague, Czech
Republic, 2003), vol. 2623.

HEeATH, J., KWIATKOWSKA, M., NORMAN, G., PARKER, D., AND TYMCHYSHYN,
O. Probabilistic model checking of complex biological pathways. In CMSB (2006).
Hucka, M., A., F., SAuro, H., BoLouri, H., DOYLE, J., AND KiTANO, H. The
systems biology markup language (SBML). Bioinfo 19, 4 (2003), 524-31.
KLERKX, E., ALARCON, P., WATERS, K., REINKE, V., STERNBERG, P., AND
ASKJAER, P. Protein kinase vrk-1 regulates cell invasion and egl-17/fgf signaling

in C. elegans. Dev Bio 835, 1 (2009).

KuMAR, S., AND FEIDLER, J. BioSPICE: A computational infrastructure for in-
tegrative biology. OMICS 7, 3 (2003), 225.

L1, C., NaGasaki, M., UEno, K., AND MI1vANO, S. Simulation-based model
checking approach to cell fate specification during C. elegans vulval development
by hybrid functional petri net with extension. BMC' Sys Bio 8, 42 (2009).
SANCHEZ, L., AND THIEFFRY, D. Segmenting the fly embryo: a logical analysis fo
the pair-rule cross-regulatory module. J of Theo Bio 244 (2003).

SCHAUB, M., HENZINGER, T., AND FISHER, J. Qualitative networks: A symbolic
approach to analyze biological signaling networks. BMC Sys Bio 1, 4 (2007).
SUNDARAM, M. V. The love-hate relationship between Ras and Notch. Genes Dev
19, 16 (2005).

THOMAS, R., THIEFFRY, D., AND KAUFMAN, M. Dynamical behaviour of biolog-
ical regulatory networks—i. biological role of feedback loops and practical use of
the concept of the loop-characteristic state. Bull of Math Bio 55, 2 (1995).

Yoo, A. S., Bars, C., AND GREENWALD, I. Crosstalk between the EGFR and LIN-
12/Notch pathways in C. elegans vulval development. Science 303, 5658 (2004).
ZOTIN, A. The Stable state of organisms in thermodynamic bases of biological
processes: Physiological Reactions and Adaptations. 1990.

